1          International Commission on Radiological Protection, Guide for the Practical Applications of the ICRP Human Respiratory Tract Model. Supporting Guidance 3. Ann. of the ICRP. 32 (1-2) Pergamon Press, Oxford (2002).

 

2          International Atomic Energy Agency, Direct Methods for Measuring Radionuclides in Man. Safety Series 114 (1996). IAEA, Vienna.

 

3          International Commission on Radiation Units and Measurements, ICRU Report 69, Direct Determination of the Body Content of Radionuclides, Journal of the ICRU, Vol. 3,No 1 (2003)

 

4          Landolt-Börnstein/New Series Group VIII: Advanced Materials and Technologies, Vol. 4 Radiological Protection, A. Kaul, D. Becker eds., ISBN 3-540-20207-2, Springer Berlin Heidelberg New York, 2005

 

5          Franck, D. et.al. (2000). Investigation of silicon detectors to improve in vivo monitoring of 239Pu after accidental intakes. Radiat Prot Dosim 89, 321-324.

 

6          Webb, J.L., Gadd, M., Bronsen, F. and Tench, O. (2000) An evaluation of recent lung counting technology. Radiat Prot Dosim 89, 325-332.

 

7          Genicot, J.L. (2000). The in vivo detection of low energy photon emitters in radiation protection and in nuclear medicine. A new philosophy for new needs in in vivo counting. Radiat Prot Dosim 89, 339-342.

 

8          Genicot, J.L. et.al. (2003) The reduction of limits of detection in in vivo counting of low energy photon emitters by optimising the shape and size of detectors. Radiat Prot Dosim 105, 457-462.

 

9          Wahl, W., Franck, D., Fischer, H. and Roth, P. (2006) Enhancements in application for in vivo monitoring: source, detector and geometry relations. Proceedings of the IM 2005 European workshop on individual monitoring of ionising radiation. To be published in Radiat Prot Dosim.

 

10       Malatova, I., Personal communication (2008)

 

11       Franck, D. et.al. (2003) Application of Monte Carlo calculations to calibration of anthropomorphic phantoms used for activity assessment of actinides in lungs. Radiat Prot Dosim 105, 403-408.

 

12       Hunt, J.G., Dantas, B.M., Lourenco, M.C. and Azeredo, A.M.G. (2003) Voxel phantoms and Monte Carlo methods applied to in vivo measurements for simultaneous 241Am contamination in four body regions. Radiat Prot Dosim 105, 549-552.

 

13       Doerfel, H., Heide, B., Calibration of a phoswich type partial body counter by Monte-Carlo simulation of low energy photon transport,  Radiat Prot Dosim.

 

14       International Atomic Energy Agency. (1999) Assessment of Occupational Exposure Due to Intakes of Radionuclides, Safety Guide No. RS-G-1.2. IAEA, Vienna.

 

15       International Atomic Energy Agency. (2000) Indirect Methods for Assessing Intakes of Radionuclides Causing Occupational Exposure, Safety Series No. 18. IAEA, Vienna.

 

16       International Atomic Energy Agency. (2004) Methods for Assessing Occupational Radiation Doses Due to Intakes of Radionuclides, Safety Series No. 37. IAEA, Vienna.

 

17       Duke K (1998). Use of the urinary excretion of creatinine in plutonium in urine bioassay. Radiat Prot Dosim 79 125-128.

 

18       Youngman, M.J., Smith, J.R.H. and Kovari, M. (1994) The determination of thorium lung burden by measurements of thoron in exhaled air. Radiat Prot Dosim 53, 99-102.

 

19       Sathyabama, N., Eappen, K.P. and Mayya, Y.S. (2005) Calibration of an electrostatic chamber for thoron measurements in exhaled breath. Radiat Prot Dosim 118, 61-69.

 

20       Leide-Svegborn, S. et.al. (1999) Biokinetics and radiation doses for 14C-urea in adults and children undergoing the Helicobacter pylori breath test. Eur. J. Nucl. Med. 26, 573-580.

 

21       Gunnarsson, M. et.al. (2003)  Biokinetics and radiation dosimetry for patients undergoing a glycerol tri-[14C]oleate fat malabsorption test. Appl. Radiat. Isot. 58, 517-526.

 

22       Hurtgen, C. and Cossonnet, C. (2003) OMINEX Work Package 3, Uncertainty on bioassay measurement. Scientific Report SCK-CEN – BLG-935. SCK-CEN, Mol, Belgium, April 2003.

 

23       Parrish, R.R., Thirlwall, M.F., Pickford, C., Horstwood, M., Gerdes, A., Anderson, J. and Coggon, D. (2006) Determination of 238U/235U, 236U/238U and uranium concentration in urine using SF-ICP-MS and MC-ICP-MS: an interlaboratory comparison. Health Phys 90 127-138.

 

24       Blanchardon, E., Personal communication (2008)

 

25       Whicker, J.L. (2004). Relationship of air sampling measurements to internal dose: a review. Midyear Health Physics Society Meeting. pp73-77.

 

26       Marshall, M., Stevens, D.C. (1980) The purposes, methods and accuracy of sampling for airborne particulate radioactive materials. Health Phys. 39, 409–423.

 

27       Britcher, A.R., Strong, R., “Personal air sampling – a technique for the assessment of chronic low leve exposure?”, Radiat. Protect. Dosim., 53, 59-62, 1994.

 

28       International Commission on Radiological Protection. Limits for Intakes of Radionuclides by Workers. ICRP Publication 30, Part 1. Ann. of the ICRP. 2 (3/4), Pergamon Press, Oxford (1979).

 

29       International Commission on Radiological Protection. Age-dependent Doses to Members of the Public from Intake of Radionuclides. ICRP Publication 56, Part 1. Ann. of the ICRP. 20 (2). Pergamon Press, Oxford (1989).

 

30       International Commission on Radiological Protection, Age-dependent Doses to Members of the Public from Intakes of Radionuclides: Part 2.  Ingestion Dose Coefficients. ICRP Publication 67, Annals of the ICRP, 23, No. 3/4 (1993)

 

31       International Commission on Radiological Protection, Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66, Annals of the ICRP, 24, No. 1-3 (1994)

 

32       International Commission on Radiological Protection, Age-dependent Doses to Members of the Public from Intakes of Radionuclides: Part 3.  Ingestion Dose Coefficients. ICRP Publication 69, Annals of the ICRP, 25, No. 1 (1995)

 

33       International Commission on Radiological Protection. Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 4, Inhalation Dose Coefficients. ICRP Publication 71. Ann. of the ICRP. 25 (3-4). Pergamon Press, Oxford (1995).

 

34       Bailey M. R., Guilmette R. A., Jarvis N. S. and Roy M. Practical application of the new ICRP Human Respiratory Tract Model. Radiat. Prot. Dosim. 79: 17–22 (1998).

 

35       Bailey M. R., Guilmette R. A., Ansoborlo E. and Paquet F. Practical application of the ICRP Human Respiratory Tract Model. Radiat. Prot. Dosim. 105: 71–76 (2003).

 

36       International Commission on Radiological Protection. Dose Coefficients for Intakes of Radionuclides by workers Replacement of ICRP Publication 61, ICRP Publication 68, Annals of the ICRP. 24 (4). Pergamon Press, Oxford (1995).

 

37       International Commission on Radiological Protection. Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 5 Compilation of Ingestion and Inhalation Dose Coefficients. ICRP Publication 72. Ann. of the ICRP. 26 (1). Pergamon Press, Oxford (1996).

 

38       International Commission on Radiological Protection. Individual Monitoring for Internal Exposure of Workers.  ICRP Publication 78, Annals of the ICRP. 27 (3/4). Pergamon Press, Oxford (1998).

 

39       International Commission on Radiological Protection, Human alimentary tract model for radiological protection. ICRP Publication 100, Ann. ICRP 36 (1-2).

 

40       International Commission on Radiological Protection. 1990 Recommendations of the ICRP. ICRP Publication 60. Ann. of the ICRP. 21 (1-3). Pergamon Press, Oxford (1991).

 

41       National Council of Radiation Protection and Measurements, Development of a biokinetic model for radionuclide-contaminated wounds and procedures for their assessment, dosimetry and treatment. NCRP Report No. 156. (2007).

 

42       Marsh, J.W. et.al. Internal dose assessments: uncertainty studies and update of IDEAS Guidelines and databases within CONRAD project, Radiat. Prot. Dosim., to be published in 2008

 

43       International Commission on Radiological Protection. General Principles for the Radiation Protection of Workers. ICRP Publication 75. Ann. of the ICRP. 27 (1). Pergamon Press, Oxford (1997).

 

44       Phipps, A. W., Jarvis, N. S., Silk, T. J. and Birchall, A. Time-dependent functions to represent the bioassay quantities given in ICRP Publication 78. NRPB-M824, Chilton, National Radiological Protection Board (1998).

 

45       Potter, C. A. Intake retention fractions developed from models used in the determination of dose coefficients developed for ICRP Publication 68-particulate inhalation. Health Physics. 83(5): 594-789 (2002).

 

46       Ishigure, N. Nakano, T. Matsumoto M. and Enomoto. H. Database of calculated values of retention and excretion for members of the public following acute intake of radionuclides. Radiat. Prot. Dosim. 105: 311-316 (2003).

 

47       International Commission on Radiological Protection. Individual Monitoring for Intakes of Radionuclides by Workers: Design and Interpretation.  ICRP Publication 54, Annals of the ICRP. 19 (1-3). Pergamon Press, Oxford (1988).

 

48       Doerfel, H. et.al.,  Third European Intercomparison Exercise on Internal Dose Assessment, Research Center Karlsruhe,  Research Report FZKA 6457, Karlsruhe, (2000), ISSN 0947-8620.

 

49       Doerfel, H. et.al.  General Guidelines for the Estimation of Committed Effective Dose from Incorporation Monitoring Data, Research Centre Karlsruhe,  Research Report FZKA 7243, Karlsruhe, (2006), ISSN 0947-8620.

 

50       Hurtgen, C. et.al. Application of IDEAS Guidelines: the IDEAS/IAEA intercomparison exercise on internal dose assessment,  Radiat Prot Dosim Vol. 127, Nos. 1-4, 317-320 (2007).

 

51       Hurtgen, C. et al. IDEAS/IAEA intercomparison exercise on internal dose assessment. Scientific Report SCK.CEN–BLG-1018, SCK.CEN, Mol, Belgium (October 2005). Available on http://publications.sckcen.be/dspace/handle/10038/257

 

52       International Atomic Energy Agency, Intercomparison Exercise on Internal Dose Assessment, Final report of a joint IAEA-IDEAS project, IAEA Technical Document, IAEA-TECDOC-1568, IAEA, Vienna (2007) available at http://www.pub.iaea.org/MTCD/publications/PDF/te_1568_web.pdf

 

53       Henrichs, K., Monitoring of workers for internal contaminations: The concept of ISO and the approach for the dose assessment. (these proceedings)

 

54       Doerfel, H. et al., General guidelines for the assessment of internal dose from monitoring data: progress of the IDEAS project, Radiat Prot Dosim Vol. 127, Nos. 1-4, 303-310 (2007). Available on http://www.ideas-workshop.de/. or http://www.bologna.enea.it/attivita/ideas.html.

 

55       Hurtgen, C., Bailey, M.R., Marsh, J., et al., Personal communication (2004)

 

56       Dorrian, M. D. and Bailey, M. R. Particle size distributions of radioactive aerosols measured in workplaces. Radiat. Prot. Dosim. 60: 119–133 (1995).

 

57       Moss, W.D., Campbell, E.E., Schulte H.F., et al. (1969) A study of the variations found in plutonium urinary data. Health Phys. 17, 571–578.

 

58       Riddell, A.E., Britcher, A.R. (1994) Pluto – A software package using the maximum likelihood method to fit plutonium in urine data to an excretion function. Radiat. Prot. Dosim. 53 (1-4), 199–201.

 

59       International Organisation for Standardization. Determination of the detection limit and decision threshold for ionizing radiation measurements. Part 1. Fundamentals and application to counting measurements without the influence of sample treatment.ISO 1129-1:2000. ISO, Geneva (2000).

 

60       International Organisation for Standardization. Determination of the detection limit and decision threshold for ionizing radiation measurements. Part 2. Fundamentals and application to counting measurements with the influence of sample treatment. ISO 1129-2:2000. ISO, Geneva (2000).

 

61       International Organisation for Standardization. Determination of the detection limit and decision threshold for ionizing radiation measurements. Part 3. Fundamentals and application to counting measurements by high resolution gamma spectrometry, without the influence of sample treatment. ISO 1129-3:2000. ISO, Geneva (2000).

 

62       International Organisation for Standardization. Determination of the detection limit and decision threshold for ionizing radiation measurements. Part 7. Fundamentals and general applications. ISO 1129-7:2005. ISO, Geneva (2005).

 

63       International Organisation for Standardization. Determination of the detection limit and decision threshold for ionizing radiation measurements. Part 8. Fundamentals and general application to unfolding of spectrometric measurements without the influence of sample treatment. ISO 1129-8:2005. ISO, Geneva (2005).

 

64       Marsh J.W et al. Validation of IMBA and IMBA Expert presented at the European IRPA Congress 2002 “Towards Harmonization of Radiation Protection in Europe” Florence , Italy, 8-11 October 2002

 

65       Jech, J. J., Andersen, B. V., Heid, K. R., Interpretation of human urinary excretion of plutonium for cases treated with DTPA.  Health Physics, 22, 787-792, (1972).

 

66       La Bone, T. R. Evaluation of Intakes of Transuranics Influences by Chelation Therapy, Internal Radiation Dosimetry, (1994).

 

67       La Bone, T. R. A comparison of methods used to evaluate intakes of transuranics influenced by chelation therapy (U).  Health Physics Summer School on Practical Applications of Internal Dosimetry. University of Florida, Florida, June 10-14, 2002. WSRC-MS-2002-00417 (2002).

 

68       Lopez, M. A. et. al., Internal dosimetry: towards  harmonization and coordination of research, to be published in Radiat. Prot. Dosim. (2008).

 

69       Noßke, D. et. al., Development, Implementation and Quality Assurance of Biokinetic Models within CONRAD. Radiat. Prot. Dosim. Special issue EURADOS Annual Meeting AM2008 (2008).

 

70       Fry, F.A., Lipsztein, J.L. and Birchall A., The ICRP Working Party on Bioassay Interpretation. Presented at the Workshop on Internal Dosimetry of Radionuclides: Occupational, Public and Medical Exposure, Oxford, 9–12 September 2002. Radiat Prot Dosim Vol. 105, Nos. 1-4 (2003).

 

71       Birchall, A.., et.al., IMBA ExpertTM: Internal Dosimetry Made Simple, Radiat. Prot. Dosim. 105: 421-425 (2003).

 

72       Birchall, A., Puncher, M., Marsh, J.W., et al, IMBA Professional Plus: A flexible approach to internal dosimetry. Proceedings of the IM 2005 European workshop on internal monitoring of ionising radiation,  Radiat. Prot. Dosim., Vienna 2005 Special Issue 2006

 

73       Berkovski, V., et al., Internal Dosimetry Support System: Multipurpose Research Computer Code, Radiat. Prot. Dosim. 79: 371-374 (1998).

 

74       Berkovski, V., Application of the internal dosimetry support system for interpretation of in vivo and bioassay measurements. Radiat Prot Dosim Vol 89, Nos 3-4, p. 271 (2000).

 

75       Doerfel, H., IDEA System – a new computer-based expert system for incorporation monitoring. Radiat Prot Dosim Vol. 127, Nos. 1-4, 425-429 (2007).

 

 

 

 

 

 

 

 


 

 

Prof. Dr.-Ing. Hans Richard Doerfel

IDEA System GmbH, Am Burgweg 4, D-76227 Karlsruhe, Germany.

E-Mail: info@idea-system.com